2.8 EXTRA QUESTIONS MS

1.

(i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet / 1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{Cl} \bullet$ (1)
(ii) $\mathrm{Cl} \bullet+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \bullet+\mathrm{HCl}$ (1)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl} \bullet+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Cl}(\mathbf{1})$
(iii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCl}_{3} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCHC}_{6} \mathrm{H}_{5} /$
other correct possible answer (1)
2. (a) (i) (free-)radical substitution
(both words required for the mark)
(ii) uv light OR sunlight OR high temperature OR $150^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C} \quad 1$
(iii) Propagation 1
(ignore "chain", "first", "second" in front of the word propagation)

> (iv) Termination
> $\cdot \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Br} \cdot \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
> OR 2. $\mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
> (penalise if radical dot is obviously on CH_{3}, but not otherwise)
> (penalise $\mathrm{C}_{2} \mathrm{H}_{5}$)
> (credit $2 \mathrm{Br} \cdot \longrightarrow \mathrm{Br}_{2}$)
> (ignore "chain" in front of the word termination)
(b) (i) Fractional distillation OR fractionation
(credit gas-liquid chromatography, GLC)
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{3}+6 \mathrm{Br}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{Br}_{6}+6 \mathrm{HBr}$
(credit $\mathrm{C}_{2} \mathrm{H}_{6}$ for ethane)
3. (a) (i) (free-) radical substitution 1
(both words required for the mark) initiation $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}$ -
(credit correct half arrows, but penalise double headed arrows)
first propagation $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot \rightarrow \cdot \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl} \quad 1$
second propagation $\cdot \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl} \cdot \quad 1$
(penalise the absence of dots on radicals once only)
(penalise radical dot on Cl of $\mathrm{CH}_{2} \mathrm{Cl}$ once only)
(ii) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
(penalise if any radicals appear in this equation)
(b) $\quad \mathrm{M} 1: \quad \mathrm{mol} \mathrm{C}=10.1 / 12.0$ and $\mathrm{mol} \mathrm{Cl}=89.9 / 35.5 \quad 1$

M2: Ratio $0.842: 2.53$ OR 1: 3 OR CCl3 1
M3: $\quad 237.0 / \mathrm{Mr}$ of $\mathrm{CCl}_{3}=237.0 / 118.5=2$ Therefore $\mathrm{C}_{2} \mathrm{Cl}_{6} \quad 1$
(correct answer gains full credit)
OR
M1: $\quad 237.0 \times 10.1 / 100$ and $237 \times 89.9 / 100 \quad 1$
M2: Ratio 23.9/12.0:213/35.5 OR $2: 6 \quad 1$
M3: $\mathrm{C}_{2} \mathrm{Cl}_{6} \quad 1$
(correct answer gains full credit)
(c) any two from CHBr_{3} or CBr_{4} or $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$ (or $\mathrm{CHBr}_{2} \mathrm{CHBr}_{2}$) or $\mathrm{C}_{2} \mathrm{Br}_{6}$ (or $\mathrm{CBr}_{3} \mathrm{CBr}_{3}$)
(ignore HBr or H_{2})
(ignore equations and ignore names when given in addition to formulae) (penalise names alone)
4. (a) (i) substitution or hydrolysis (1)
nucleophile (1)
(ii) $\mathrm{H} \overline{\mathrm{O}}$

(1)

(b) (i) Type of reaction elimination (1)

Role of reagent base or proton acceptor (1)
(ii) Structure of the alkene $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3} \mathbf{(1)}$

Mechanism

(iii) Structure of second alkene
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)=\mathrm{CHCH}_{3}(1)$
(1)

Name
3,4-dimethylpent-2-ene (1)
Structure of third alkene
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{CH}_{2}$ (1)
Name
2-ethyl-3-methylbut-1-ene(1)
10
5.
(i) M1 curly arrow from lone pair of electrons on oxygen of hydroxide ion
(insist on a lone pair of electrons on the oxygen atom and a negative charge, but only credit this mark if the attack is to a correct H atom)

M2 curly arrow from the middle of the $\mathrm{C}-\mathrm{H}$ bond to the middle of the $\mathrm{C}-\mathrm{C}$ bond.
(only credit this mark if the arrow originates from the correct
$C-H$ bond and if an attempt has been made at M1)

M3 curly arrow from the middle of the $\mathrm{C}-\mathrm{Br}$ bond towards/alongside the Br atom.
(credit M3 independently unless the bond breaking is contradicted by an additional arrow)
(penalise M3 curly arrow if the $\mathrm{C}-\mathrm{Br}$ has a formal positive charge) (ignore partial charges on the $\mathrm{C}-\mathrm{Br}$ bond, but penalise if incorrect)
(credit full marks for an E1 mechanism, with M2 awarded for a correct curly arrow on the correct carbocation)
(award a maximum of two marks for an incorrect haloalkane)
(ignore products)
(ii) Haloalkane/ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ is made from ethane

OR haloalkane is not (readily) available
OR haloalkane is expensive
OR it is (too) expensive/costly
OR (reaction) yield is too low/poor
OR it is too slow
OR a valid reference to nucleophilic substitution/alcohol formation occurring as an alternative reaction.
(ignore references to temperature or to energy consumption)
(do not credit statements which refer to the idea that this route is not chosen, because industry chooses another route e.g. cracking)
6.
(i) M1: potassium cyanide OR KCN OR sodium Cyanide OR NaCN;
(ignore conditions - dissolved in (aq) or (alc) or $\mathrm{KOH}(\mathrm{aq})$ all work) (penalise HCN)
M2: propanenitrile;
(credit propan-1-nitrile OR propan nitrile, but not propanitrile)
(ii) M1: ammonia OR NH_{3};
(If formula is written, insist that it is correct) (ignore conditions, but penalise acidic)

```
M2: ethylamine;
1
(credit aminoethane)
```

(iii) M1: curly arrow from lone pair on nitrogen of (correct formula for) ammonia towards/alongside C atom of $\mathrm{C}-\mathrm{Br}$;
(penalise M1 if formula of ammonia is wrong or has a negative charge or has no lone pair or arrow is from negative charge)

M2: curly arrow from C-Br bond towards/alongside side Br atom;
$\left.\begin{array}{l}\text { (credit M2 independently) } \\ \text { (penalise M2 if formal positive charge on } \mathrm{C} \text { atom of } \mathrm{C}-\mathrm{Br} \text {) }\end{array} \quad 1 \begin{array}{l}1\end{array}\right)$.

> M3: correct structure of the ethylammonium ion; (credit the structure drawn out with all four bonds around the nitrogen atom OR written as $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} \mathrm{OR} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{3}^{+}$)

M4: curly arrow from the middle of one of the $\mathrm{H}-\mathrm{N}$ bonds towards the
positive $\underline{\mathrm{N} \text { atom; }}$
(possible to credit M4 on an incorrect ethylammonium ion with no positive charge)
(ignore use of ammonia or bromide ion etc. to remove proton from ethylammonium ion)
(If the wrong haloalkane is used, award MAX. 3 marks for the mechanism) (If $S_{\mathrm{N}} 1$ mechanism is used, give full credit in which M1 is for a curly arrow from the lone pair of the N atom of (correct formula for) ammonia towards/alongside the positive carbon atom of $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$)
7. (a)

or $\mathrm{CH}_{3} \mathrm{CHBrCH}\left(\mathrm{CH}_{3}\right)_{2}$
(1)
(b)

(1)
(ii) (nucleophilic) elimination

(c) 3-methylbut-1-ene (1)
8. (i) Mechanism:

M1 and M2 independent
Curly arrows must be from a bond or a lone pair
Do not penalise sticks
Penalise M1 if Na -OH precedes (penalise this once)
Penalise incorrect $\delta+\delta$-for M2
Penalise + on C atom for M2
Only allow M1 for incorrect haloalkane
Role of the hydroxide ion: nucleophile (1)
electron pair donor
lone pair donor
NOT nucleophilic substitution
(ii) Mechanism:

Only allow M1 and M2 for incorrect haloalkane unless RE on (i)

+ charge on H on molecule, penalise M1
M3 independent
M2 must be to correct $C-C$
M1 must be correct H atom
Credit M1 and M2 via carbocation mechanism
No marks after any attack of $\mathrm{C} \oplus$ by OH^{-}
Role of the hydroxide ion: base (1)
proton acceptor
accepts H^{+}

9. (a) (i) Structure:

No credit for propan-1-ol even when named correctly
Credit propane-2-ol
Name: propan-2-ol (1)
Not 2-hydroxypropane
(ii) Name of mechanism: nucleophilic substitution (1) (both words)
$\left(\mathrm{NOT} \mathrm{S}_{\mathrm{N}} 1 \mathrm{orS}_{\mathrm{N}} 2\right.$)
M1
arrow

(M2) lone pair
penalise incorrect polarity on $\mathrm{C}-\mathrm{Br}$ (M1)
Credit the arrows even if incorrect haloalkane
If $S_{N} 1$, both marks possible
i.e. $\quad \mathrm{M} 1 \quad \mathrm{C} \underset{\mathrm{a}}{\mathrm{Br}} \quad \mathrm{M} 2{ }^{\ominus} \mathrm{H} \stackrel{\leftarrow}{\mathrm{O}} \downarrow_{\text {correct carbocation }}$
(b) (i) elimination (1)
(ii) base (1)

OR proton acceptor
NOT nucleophile (base)
10. (a) M1 NaOH OR KOH OR correct name

M2 aqueous or solution in water (ignore heat, reflux etc.)
(Penalise M1 for hydroxide ion alone, but mark on and credit M2)
(Credit M2 ONLY for $\mathrm{H}_{2} \mathrm{O}$ as reagent and heat / warm / $T=50$ to $100^{\circ} \mathrm{C}$)
($\mathrm{NaOH}(\mathrm{aq})$ scores M1 and M2 provided it is not contradicted) (Penalise M2 if $\mathrm{NaOH}(\mathrm{aq})$ followed by concentrated or ethanol) (Penalise M1 and M2 if followed by acid)
(b) Ethanolic OR alcoholic OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{OH}$ solvent OR aqueous ethanol/alcohol
OR higher temperature (must be comparative)
(Ignore heat or heat under reflux)
(Credit part (c) independently from part (b))
(Penalise "ethanoic")
11. (i) 2-methylpropanenitrile (1)
(ii) Reagent KCN (1)

Conditions alcoholic/aq (1)
(iii) Name of mechanism nucleophilic substitution (1)

Mechanism

7
12. (a) Name of mechanism: nucleophilic substitution (1) Mechanism:

Marks $\mathrm{S}_{\mathbf{N}} 1$ using same points

(b) Role of potassium hydroxide: Base (1) Mechanism:

(1)

Mark E1 using same points
$\therefore \quad \mathrm{M} 2 / \mathrm{M} 3$

13. elimination (1)
14. (i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ (1) Not $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CN}$

Pentanenitrile (1)
allow pentanonitrile, ignore numbers
(ii) Nucleophilic substitution (1)

SN1 mechanism
M1 formation of carbocation including $\mathrm{C} \xlongequal[\mathrm{Br}]{\left(\frac{1}{r}\right.}$
M2 attack by :CN-
allow mechanism showing ' Cl ’
If ‘+’ onC’ lose M1
If $K-C N$ shown lose M2
If $\delta c_{-}^{\delta+}$ lose M1
(iii) $\mathrm{C}-\mathrm{F}$ bond is strong (er) (1)

Must imply $C-F$ is stronger than $\mathrm{C}-\mathrm{Br}$ bond
ignore references to electronegativity, bond polarity etc.
(b) nucleophile or electron pair donor
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{Br}$
(M1 correct product)
(M2 balanced equation using $2 \mathrm{NH}_{3}$ and leading to $\mathrm{NH}_{4} \mathrm{Br}$)
(penalise M1 for use of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$ or for incorrect haloalkane,
but allow consequent correct balancing of equation with 2 moles
of ammonia)
(1-)butylamine
(credit 1-aminobutane and butyl-1-amine)
(award QoL mark for correct spelling)
16.
(i) potassium or sodium hydroxide (or other specific strong base) (1)
allow formula; not just 'hydroxide'
in ethanolic /alcoholic solution (independent of first mark) (1)
allow 'in ethanol', not just 'ethanol'/ 'with ethanol'
ignore references to heat I pressure
(ii)

structure of cyclohexene showing double bond (1)
minimum structure needed is a ring with CH_{2} units implied and double bond:
do not allow KOH over arrow
equation correct overall ie balanced
allow ionic equation (1)
(iii) elimination / dehydrohalogenation
ignore nucleophilic / electrophilic etc.
[5]
17.
(a)
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KCN} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{KBr}$ (1)
allow $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$
allow $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$
(ii) nucleophilic substitution / SN2 (1)
(b) CN^{-}or $\mathrm{NC}^{-}(1)$
lone pair of electrons on C atom (1)
18. (a) 2-bromobutane;
(b) Elimination;
(penalise "nucleophilic" OR "electrophilic" before the word "elimination")

M1: curly arrow from lone pair on oxygen of hydroxide ion to H atom on correct $\mathrm{C}-\mathrm{H}$ adjacent to $\mathrm{C}-\mathrm{Br}$;
(penalise M1 if KOH shown as covalent with an arrow breaking the bond)

M2: curly arrow from single bond of adjacent C-H to adjacent single bond C-C; 1 (only credit M2 if M1 is being attempted to correct H atom)
M3: curly arrow from C-Br bond to side of Br atom;
(credit M3 independently unless arrows contradict)
(Credit possible repeat error from 2(c)(iii) for M3)
(If the wrong haloalkane is used OR but-1-ene is produced,
award MAX. 2 marks for the mechanism)
(If E1 mechanism is used, give full credit in which M1 and M2
are for correct curly arrows on the correct carbocation)
19. (a) (i) $\mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+2 \mathrm{HCl}$ (1)
(ii) step in which radicals are used and formed (1)
(iii) $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HCl}$ (1)
(iv) $\bullet \mathrm{CHCl}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+\mathrm{Cl} \bullet$
(b) Equation
$\mathrm{CH}_{3} \mathrm{Cl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}$ (1)
Mecanism

5
20.
$\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$ (1)
Initiation: $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot(\mathbf{1})$
Propagation: $\mathrm{CH}_{4}+\mathrm{Cl} \cdot \rightarrow \mathrm{CH}_{3} \cdot+\mathrm{HCl}(1)$

$$
\mathrm{CH}_{3} \cdot+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot(\mathbf{1})
$$

Termination: $\mathrm{Cl} \cdot+\mathrm{Cl} \cdot \rightarrow \mathrm{Cl}_{2} \mathbf{(1)}$

$$
\text { or } \mathrm{CH}_{3^{\bullet}}+\mathrm{CH}_{3} \cdot \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}
$$

$$
5
$$

$\mathrm{NH}_{3}(\mathbf{1})$
For Reaction 4; credit dil $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{OR}_{2} \mathrm{SO}_{4}(a q) \mathrm{OR} \mathrm{HCl}(\mathrm{aq})$ but NOT steam and NOT $\mathrm{NaOH}(a q)$
22. nucleophilic substitution
(both words needed)
Mechanism M1 curly arrow from lone pair on oxygen of hydroxide
ion to C atom of $\mathrm{C}-\mathrm{Br}$
Mechanism M2 curly arrow from $\mathrm{C}-\mathrm{Br}$ bond to side of Br atom
(a possible repeat error here from Question 4a)
(award a maximum of one mark for the wrong haloalkane)
(credit an SNl mechanism in which Ml will be a curly arrow from the lone pair on oxygen of the hydroxide ion to the correct positive carbon atom)

Y is susceptible to attack by hydroxide ions for one of the following reasons
o the $\mathrm{C}-\mathrm{Br}$ bond is polar
o the carbon atom is partially positive (or shown as such)
o the carbon atom is electron deficient
23. (a) Reaction 2: NaOH OR KOH (1) M1 alcohol (ic) OR ethanol (ic)(1) M2 ignore heat
Condition mark linked to correct reagent but award M2 if OH^{-} or base or alkali mentioned
(b) Mechanism:

Award M3 (C C Cl) independently
M1 and M2 must be to / from correct places

E1 mechanism possible in which M2

Name: of mechanism = elimination (1)
NOT dehydrohalogenation
Ignore "base" OR "nucleophilic" before elimination
Reason: Reaction 2 has (very) low yield (1)
QoL OR chloroethane has to be made (from ethane)
OR chloroethane is expensive
OR chloroethane is not redily available
24. (a) Alcohol: Reaction = Substitution (/ hydrolysis) (1)

Ignore reference to nucleophilic, but electrophilic give zero
Alcohol: Role = nucleophile (/ lone pair donor) (1)
Alkene: reaction = elimination (1)
Ignore ref to nucleophilic or electrophilic
Alkene: base (/ proton acceptor) (1) 4
(b) Alcohol = butan-2-ol (1)

Not 2-hydroxybutane or but-2-ol
Appropriate structure for $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{1})$
Brackets not essential
$\mathrm{S}_{\mathrm{N}} 2$ version
$\delta+\quad \delta-$
$\stackrel{\delta+}{\mathrm{C}}-\stackrel{{ }_{\mathrm{B}}^{\mathrm{Br}}}{ }$ bond is polar
Lone pair of OH^{-}
Attacks the $\mathrm{C}^{\delta+} \quad$ forming carbocation / carbonium ion (1)
$\mathrm{S}_{\mathrm{N}} 1$ version
$\mathrm{C}-\mathrm{Br}$ bond is polar (1)
$\mathrm{C}-\mathrm{Br}$ bond breaks (1)

M1 can be scored from a diagram, M2 and M3 from written explanation only
25.
(i) 2-chloro(-2-)methylpropane / (2)methyl 2 chloropropane (1)
(ii) appropriate unambiguous formula for either but-1-ene or but-2-ene (1) appropriate unambiguous formula for the remaining structural isomer allow 1 mark if candidate draws cis and trans but-2-ene (1)
(iii) unambiguous structure for 2-methylpropan-1-ol - may be from mechanism (1)
curly arrow / attack by $\mathrm{OH}^{-} \quad$ curly arrow from lone pair or charge only (1)
do not allow if $\mathrm{Na}-\mathrm{OH}$
curly arrow from bond to Cl / dipole shown on
C-Cl bond / intermediate showing 3 full and 2 partial bonds to C (1)
loss of Cl^{-}
NaCl or $\mathrm{Na}^{+}: \mathrm{Cl}^{-}(\mathbf{1})$

- not allowed
if $\mathrm{S}_{\mathrm{N}} 1$ mechanism given:
first mark as above - independent second mark for correct carbocation formed including curly
arrow from C to Cl or $\mathrm{C}^{\mathrm{S}+}-\mathrm{Cl}^{\mathrm{S}-}$
third mark for hydroxide attack as above
final mark not available (wrong mechanism)
penalise missing proton once only

26.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}(\mathrm{OH})\left(\mathrm{CH}_{3}\right)_{2}$ (1) \quad 2-methylbut-2-ene (1)
2-methylbutan-2-ol (1) also loss of H^{+}from CH_{3} (1)

2-methylbut-l-ene (1)

